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ABSTRACT

This paper attempts to provide an introduction

for statisticians to the version of optimal experimental

design theory for parameter estimation in regression

medels that is appropriate to dynamic systems.

paper consists of three main parts:

The

first, a glossary

of some terminology in control engineering and an intro-

duction to the main aspects of dynamic systems; second,

a summary of the principal results and patterns in

optimal experimental design theory; and third, the ways

in which the latter carry over to dynamic models. These

applications are split roughly into those involving

choice of fnput functions and those in which sampling

times are selected.

KEY WORDS:

dynamic systems; input signal synthesis;

optimal experimental design; parameter

estimation.
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1. INTRODUCTION
The main objective of this work is to bring to a statistical

readership the recent activity among control engineers in the field
of experimental design. Principally, we mean to catalogue work that
parallels so-called optima)l experimental design in which important
references are Kiefer (1959, 1974), Kiefer and Wolfowitz (1960),
Fedorov (1972), Whittle (1973), and Silvey (1974). It is to be hoped
that statisticians will become more familiar with and more interested
in dynamic problems, a hope that has been expressed before in Wishart
(1969), Young (1975), Wynn (1974), and Harrison and Stevens (1976).

In the engineering literature there are useful surveys by Mehra

- (1974b) and Goodwin and Payne (1977), but it is hoped that a "trans-

lation” might be helpful to a statistical audience.

The dictionary for the translation is provided in Section 2. 1In
Section 3 the main features of "static" optimal design theory are laid
out and in Sections 4 and 5 generalizations of these to dynamic sys-

tems are described. Section 6 contains a brief conclusion.

2. SOME TERMINOLOGY.

A major discouragement to siatisticians who approach the engin-
eering literature is the "wealth" of jargon. There are both new con-
cepts and aiternative terms for familifar ideas. Many of these are
discussed at length in the survey by Wishart (1969) of the determin-
istic optimal control problem, and here we give but a brief introduc-
tion to the new language, with special regard to the problems related
to experimental designs.

Since "time"” is an essential feature of dynamic systems, we will

5 SR e SN e Y i N B e 5 N < YU T % TS 2 Ty s




be concerned with stochastic processes, which may be described in
discrete- or continuous-time and which may be uni- or multi-variate,
stationary or nonstationary.

E The system itself, which the statistician would be more likely
to call the model, generally involves processes of three types:

inputs, outputs, and noise. (We shall see later that a fourth cate-

» gory, the state, is often used, but it arises less directly and we
delay its description for the time being.) The inputs, or controls,
are generally open to choice, the outputs may be observed by the ex-

L perimenter, and the noise is rardom disturbance. which may be obser- :
vation error or a contribution to the dynamic evolution of the pro-
L cess.

A further component of the system is a set of parameters, con-
ceptually familiar to the statistician.
P . As an exercise in the terminology, let us consider the following
simple model.

y(t) -a,(t)y(t-1) - a,(t)y(t-2) = b, (t)u(t) +e(t), t=1,2,... (1)

with some initial conditions such as y(0) = y(-1) = 0. {y(t)) are
the outputs, {u(t)} ;re the inputs, {e(t)} the noise and the para-

meters are (al(t). az(t). bl(t)1, along with the statistical descrip-
tion of the nofse process, which almost always has zero means. In
nost discrete-time problems the noise s assumed to be normally dis-
tributed (Gaussian to the engineers) and 1f the {e(t)) are uncorrela-
ted and fdentically distributed, the noise is said to be white because
of 1ts consequently flat spectral density. Often

al(t) =a, ., forall ¢,

and similarly for the {a,(t), b;(t)}. The system is then called

W"””




3.

time-invariant, as opposed to time-varying and (1) becomes

i y(t) - a;y(t-1) - a,y(t-2) = byu(t) + e(t) , t=1,2,.... (2)

Let us suppose for the moment that the input and output processes
are scalars. Then the control engineers would describe (2) as the

input-output representation of a linear, time-invarfant, discrete-time,

stochastic, single-input-single-output system. The antonyms of all

the adjectives are obvious. By "linear" is meant linearity in the
processes, not the parameters, although, apart from the parameters in
the noise process, we do have this sort of linearity as well. 1If the
{e(t)} are normally identically and independently distributed with
zero means, we might augment the description by adding that the system

"is "driven by white Gaussian noise."

Of course, for the above example the familiar time-series lang-
uage of Box and Jenkins (1976) is also used, and the concept of

stationarity is also of concern to the engineers.

The recursive nature of (2) leads to the possibility of con-

structing a generating function version. Thus {f we denote by

JY(z) =t 2ly(i) ,
i=0 .

the 2z-transform of the output process, and so on, and if we take

{0) = 0, (2) can be written

A(z) Y(z) = B(z)u(z) + E(2) ,
where
A(z) = a, - ;2 - a212
and

B(z) = b

1 .




Going a stage further, we have, if A(z)'1 exists,
' Y(z) = Hy(2)U(z) + Hy(2)E(2) ,

where Hl(z) = A(z)'ls(z) and Hz(z) = A(z)'l are called the trans-

fer functions from the input and the noise, respectively, to the out-

put. For more discussion of this formulation, see Wishart (1969) and
Cadzow (1973).

A further important concept is that of state-space models, which

revolutionized control theory methodology. The principal objective,
in discrete-time systems, is to write the model description as a set
of first-order recursions on the so-called state variable(s), coupled
with an equation relating the observation or output at time t with
. the state variable(s) and input variable(s) at time t. We should

therefore have, for a linear time-invariant system, a model of the

form
x(t+1) = Gx(t) + Hu(t) + Fe(t)
} (3)
t=],2500s

y(t) = Bx(t) + Cu(t) + Dn(t) ,

where x(t) denotes the vector of state varfables at time t and
{e(t)} and {n(t)} are noise processes.

Systems can have both an input-output and a state-space repre-

sentation. For (2), if we define two state variables in
x,(t) = y(t-1)
xp(t) = y(t-2) ,

then we can replace (2) by (3) with

N T Y

D= (1) and n(t) = e(t), t =1,2,..., along with the initial




condition x(1) = 0.

The state-space representation is important for various reasons.

It is easy to develop the model sequentially in the time-domain.

Using input-output models, the time-domain approach is difficult and
frequency-domain or z-transform methods depend on stationarity of the.
system, which is not necessary for the state-space analysis of the
operation of the system over a finite period of time. Also, nonlinear
problems can be dealt with to some extent by linearization. Finally,
and very importantly from a statistical point of'view. if the noise-
processes are Gaussian and white (by preliminary transformation or

pre-whitening if necessary) and if the distribution of x(1) is

Gaussian, then the posterior distribution of x(t), given
y(1),...,y(t-1), is also Gaussian, with mean x(t) and covariance
matrix P(t), say. What is more, these parameters can be computed

recursively from

X(t+1) = Gx(t) + Hu(t) + K(t)v(t) (4)
y(t) = BX(t) + Cu(t) + z(t)v(t) | (5)
P(t+1) = 6P(t)6 - K(t)K'(t) + FQF' (6)

where K(t), called the gain, is defined by

K(t) = ep(t)BT (8P (t)BT + R)"V/Z | (7)

and
£(t) = (sp(t)s’ + R)1/2 |

R = covin(t)} and Q = cov{e(t)) .
Often (4) and (5) are combined by elimination of the so-called

innovation process v(t) to give the updated x(t+l) directly in

terms of X(t), u(t) and y(t). The innovation process can be

shown to be a sequencé of uncorrelated "standardized" normal random
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variables or vectors; see Kailath (1968), Frost (1968).

Equations (4), (5) and (6) form the Kalman (-Bucy) filter
(Kaiman and Bucy, 1961), which is reappearing more and more in the
statistical literature (Harrison and Stevens, 1976; 0'Hagan, 1978).
In the above they arise very naturally through Bayes Theorem and
they have been derived in several other ways: as a recursive least
squares algorithm, by maximum 1ikelihood, using projection arguments,
and by the so-called innovations approach. Stochastic approximation
methods have also been used in the theory of the Kalman filter. The
book by Jazwinskii (1970, Chapter 7) illustrates some of the ap-
proaches; see also Willems (1978).

If the system is stationary and the “steady;state“ equilibrium
has been reached, representations (4) and (5) have the interesting
feature that, because the noise process {v(t)} is the same in both,
they can be replaced by an input-output model described by the

z-transform equation

Y(z) = (8(z 11-6)"YH + ciu(z) + 8(z 11-6)"1k + zIv(z) . (8)

The steady-state gain K is computed by suppressing the time

arguments in (6) and (7) and eliminating the resulting P.

Perhaps this is the point to mention that linear systems theory
and Kalman filtering methods extend to more general situations. Con-
tinuous time processes are an obvious example, for which the equa-
tion governing the change of state will be a first order differen-
tial equation. An even more general set-up for which the Kalman the-

ory carries over is that involving so-called distributed-parameter

systems. Here the state is a function x(t,w) of two variables,

where w can take uncountably many values. In an application it




might represent spatial variables. In continuous time the model

might take the form

-a_:'l-(t’“’) =L, x(t,o) + H(w)u(t,w) + noise ,

where Lu is a linear operater involving w-derivatives. In con-
traQt. the models we have considered so far are so-called lumped-
parameter systems. They correspond to w taking only countably or
finitely many values, so that a separate set of state variables can
be defined for each w-value. 0'Hagan (1978) has used models similar
to distributed-parameter systems; a bibliography of the field is
available in Polis and Goodson (1976). ,

We return to the lumped-parameter case. The value of X(s) is
-a natural point estimate of x(s), allowing fulfillment of the acti-

vity known as state-estimation or state-identification. If we have

available the observations y(1),...,y(t-1), then, according as
s <t,s=1t,or s >t, the problem is one of smoothing, filtering,

or prediction.
Although we shall briefly mention the problem of state-estimation,

we shall concentrate more on that of parameter-estimation or system-

identification. Our'design problem is to select suitable inputs over

a specified period of time, possibly infinite, to estimate the para-

meters "as well as possible"; optimal input signal synthesis. As in

optimal experimental design, some criterion of efficiency will be pro-
posed, and there generally will be some constraints on the allowable

inputs. Our problem is different from that of optimal control. There

the inputs must be chosen to keep the state vector as close as possible

to some trajectory, or to home in on some target.




The extra dimension of time has major consequences as far as
optimal design is concerned. We shal! find that the attractive
linear regression theory is rarely applicable, but we shail have the
possibility of sequential design open to us. A nonsequential design,
in which the input strategy is specified before the start, could be
used, corresponding to off-line operation, but it will seem better
to choose inputs as we go along, on-line, operating an adaptive
system.

Two final concepts should be mentioned, controllability and

observability, which are closely linked with the identifiability of

parameters. Consider the deterministic model
x(t+1) = Gx(t) + Hu(t)
y(t) = Bx(t) .

This system is completely observable 1f, after sufficient obser-

vations, the initial state x(1) can be exactly determined. It is

completely controllable if, after sufficient stages, or choices of

inputs, it is possible to translate the state to any specified posi-
tion. These concepts are important if wu(-) and y(:) are vectors,
and elegant equivalent criteria exist in terms of the matrices G,
H and B; see Wishart (1969). .

From our point of view, the interesting point is that if system
(3) is completely observable and controllable, then the parameters
in the Kalman filter representation (4), (5), (6) are identi-
fiable (Kailath, 1968, Appendix 2). Our estimation problems for
the system therefore revolve around this model, or the equivalent

input-output relationship (8); see, in particular, Section 4 D.




Before attacking the optimal design problem for dynamic systems,
it is helpful to summarize the main results in "static" theory.
Helpful textbooks on dynamic systems include Cadzow (1973), Astrom
(1970), Eykhoff (1974), and Jazwinskii (1970).

3. OPTIMAL REGRESSION DESIGN

The static version of the problem concerns optimal design for

regression models. Although O'Hagan (1978) uses Bayesian methods to
develop quite a general approach, the usual starting point involves

% observations of a response function which depends on k wunknown

| parameters 6, and on the site of the observation, u. The point

is chosen from some compact design space U. The problem is to decide
how to distribute the available observations amongst the possible

sites, or to choose an optimal design measure, which specifies the

3 proportion of the observations to be made at the different points 1in
U. The latter problem, which gives "approximate" designs, is theo-
retically much easier than the practically-motivated exact theory.
The meaning of "optimal" will be discussed presently.

The basis of the theory (see the references in Section 1) was
developed just for linear regression models with independent errors,
but it is helpful to consider a more general set-up. Let us retain
the feature of independent errors, but assume that the response func-
tion is nonlinear, in 9.

Let I(6,u) denote the Fisher information matrix corresponding
to an observation at wu. Then, if a design & on U 1is used, the

iverage per observation information matrix is

M(e,¢) = [ I(o,u)e(du) .
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Let ¢ be a real-valued convex decreasing function on the set
of k x k nonnegative definite symmetric matrices, that is, such
that ¢(A) < ¢(B) if the matrix A - B 1s nonnegative definite.

A g¢-optimal design wili be a design ¢* such that ¢(M(e,£))

is minimized at ¢*. Traditional choices for ¢ include
(i) ¢(+) = -log det(-) {D-optimality)
(1i) o) = tr(-)"} (trace-optimality) .

Let the Frechét directional derivative of ¢ from A in the
direction of B be denoted by ¢(A,B), and let E: denote the class
of design measures con U.

Then we have the following:

Theorem 1.

For any &8,
(i) M(s8,g) 1is symmetric and nonnegative definite,
for any £ ¢ - ; '
(i1) M(e) = (M(e,£):gc =} s convex and compact;
(i14) the extreme points of M(®) are each of the form

—

I(e.u). for some u; further, for any ¢ e —,
there exists n e‘EE. assigning positive weight
to at most %k(k + 1) + 1 points in U and such
that M(e,g) = M(e,n). (Essentially Carathéo-

dory's Theorem.)

Theorem 2. (cf. Whittle, 1973; Khitc, 1973)
For any 6, the following are equivalent:
(i) o¢(M(0,€)) is minimized at M(e,£*%);
(i) e(M(e,£%),M(s,n)) 2 0 for all n ¢ —

| —
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|

If ¢ 1is differentiable at M(e,t*), we also have the equi-

-~ valents:
(f1i) o(M(e,e*), I(o,u)) 2 0 for all u e U;
(iv) o(M(e,g*), I(6,u)) = 0 for any u weighted
positively in ¢*, that is, for any u 1in the

support of §*.

(Thus Theorem 1 (iii) implies that a ¢-optimal design can be achieved

with finite support, and Theorem 2 (iv) gives a practical check for

optimality when ¢ 1is differentiable.)

Algorithm 1.

Suppose ¢(+) 1is differentiable and that {cn) is a sequence

of numbers such that 0 < ay < 15 a, * 0 as n + e, and ¢ > -,

‘n
Let u be the u ¢ U that minimizes

n
@{M(Osﬁn). I(6,n)} .

Then, from an initial ¢_ ¢ E: and subject to certain conditions,

0
the sequence of designs generated by

Eney = (1 - apde, + o £(u)

converges to a o-opiimal design. c(un) denotes the degenerate

design concentrated on up - 1

Bound.

If ¢(+) 1s differentiable, ¢ ¢

(1]

and ¢* 1is an optimal de-

sign, then
Q(M(G.C)) = Q(M(esﬂ*)) & - an ¢{M(0,£), I(eoU)} . (9)

This indicates how "close" ¢ is to the optimum.
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There are many versions of the equivalence theorem, Theorem 2,

both in the statistical and in the engineering literature, but the

proofs are almost all essentially the same as that of Whittle (1973), d
which, because of its generality, is satisfyingly simple and elegant. |
The only radically different approach is that described for D-optimal-
ity in terms of Lagrangian duality theory by Sibsen (1972, 1974) and
Silvey and T}tterington (1973).

Algorifhm 1 is only one of many that have been suggested for the
computation of optimal designs; see Fedorov (1972), Wu and Wynn (1978),
Wu (1976), St. John and Draper (1975) and Titterington (1977). There
is a fundamental snag to its application, and that is its dependence
on 6. It seems that we have to know the true value of 6 in order
to calculate an optiﬁa1 design for estimating it! In the special case
of linear regression ("linear" in 8) it is easy to see that the
6-dependence disappears, so that an optimal design can, in principle,

be computed before the experiment starts. In this case M(:) is

proportional to the inverse of the covariance matrix of the least-
squares estimator of 8, 1In the nonlinear case there are three
possible general approaches.
(i) Apply Algorithm 1 with a prior estimate,
6, Of 6, and generate an "off-1ine" design
as for the linear case.
(ii) Propose some weighting function W(+) on the

parameter space, 2 . This may or may not be a

formal prior density. Then construct either

M(g) = [ M(0,£)W(d3)
2
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or a2 new criterion

? oylE) = Iﬂ¢{M(e.£)}H(de) :

|
|
!
|
.

In both cases equivalence theorems can be
written down and proved on the usual way; see ?
| Mehra (1974b), and Lauter (1974).

(iii) Carry out a sequential design procedure, or

} on-line input synthesis. One such modification ?

is the following:

Algorithm 2.

Suppuse ¢ is differentiable and that after n observations
have been made, corresponding to a design §ne @N estimate én is

available for .

Suppose u_ minimizes o{M(én.en), I(én.u)} A
Take an observation at Uy set n =n + 1, update the design

measure and repeat the procedure.

Algorithms of this type have been considered by Fedorov and
Malyutov (1972), White (1975), and Ford (1976), and in the engineer-
ing literature, as will be reported later. Chernoff (1953) discussed
the awkward dependence of optimal designs on 6 and he encouraged
the development of sequential procedures in Chernoff (1975).

Convergence of these algorithms is very hard to prove. It would
be plausible if the sequence {Sn} were consistent, but this itself
is difficult because of the complicated statistical properties of, say,
the sequence of maximum likelihood estimators of 6; see White (1975),

Ford (1976), and Goodwin and Payne (1977, p. 115). Algorithm 2 does,
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however, seem to be a workable and helpful way of dealing with the
problem of nonlinearity. Admittedly, it is only a “one-step-ahead"
procedure, but more sophisticated methods incur very heavy computa-
tions. This is evident in the Bayesian approach of 0'Hagan {1978),
and is one feature that merits further research.

This concludes a brief summary of the major results in optimal
experimental design. We only mention the important topics of exact
designs, designs for special purposes such as model choice, and the
problems that arise with designs with singular information matrices,
which may lead to lack of differentiability of ¢. This occurs par-
ticularly when only a subset of the parameters is of interest.

4. EXTENSION OF OPTIMAL DESIGN THEORY TO INPUT SIGNAL DESIGN IN
DYMANIC SYSTENMS.

In this section we illustrate how the results from Section 3

find application in the input-synthesis problem in dynamic system

identification, as the engineers would describe it. A few typical

papers are summarized and reference is made to other similar work.

A. Box and Jenkins (1976, Appendix A 11.2)

The model cbnsidered here is a very simple input-output

relationship, but it brings out several important points.
y(t + 1) - a,y(t) = byu(t) + e(t) ,
where all variables are scalar, |31= <1 and {e(t)} 1is white
Gaussian noise. (In th2 following, the engineering terminology will
be introduced more and more.) The parameters a and b1 are to be
estimated.
Box and Jenkins consider choosing input processes to maximize

the determinant of the long-term information matrix, subject to con-
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straints on the input. They consider constraints of the form

(1) oﬁ fixed, (if) ai fixed, (iii) aﬁa§ fixed.

The solutions are that in cases (i) and (ii) first-order autoregres-

sions are optimal, whereas in case (iii) white noise is best. Major

problems are that the parameters in the autoregressions depend on

a and bl’ In the dynamic case, therefore, linearity of the model %

1
in the parameters does not usually guarantee the possibility of ﬂ

off-1ine design. I
Similar problems are discussed by Ng et al. (1977) for higher-

order autoregressions. As shown by Levin (1960) the optimal input

can be computed "off-line” if the input-output relationship is a

moving average.

B. Zarrop, Payne and Goodwin (1975)

A more complicated stationary input-output representation
is considered in this paper:
n n n
- aiy(t-i) = I biu(t—i) + I cie(t-i) : (10)
i=0 i=0 i=0
Each of y(t), u(t) and e(t) is considered to be a vector
(multi-input-multi-output), the {e(t)} are taken to be independent
normal (0,z), a, and c, 3are identity matrices and the parameters
of interest,¢ , are the elements of (al.....an. bo.....b“. cl.....cn.z).
From the log-likelihood of an N-sample the Fisher information matrix

is computed. The asymptotic per observation information matrix is ex-

pressed in terms of the normalized spectral distribution function,

Fu. of the input process and it can be written as

M(e'Fu) = constant + term "linear" in dru(.) ¥
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The input spectral density takes the role of the design measure
in Section 3 and theorems exactly analogous to Theorems 1 and 2 are
available, although the proof of the latter is not given in this
reference, but in Goodwin and Payne (1977) and Mehra (1974b, 1976a).
An important modification to Theorem 1 is the definition of the ex-
treme points of the design space, which is now the range of frequen-
cies (-w,n). The extreme points correspond to pure sine-wave inputs
and Caratheodory's Theorem implies that, if o is k-dimensional, an
optimal input process can be constructed as a linear combination of
at most % k(k + 1) sinusoids. This frequency-domain approach
has a startling advantage in that the design-space is a finite inter-
val, although again the specific optimal frequencies and amplitudes
are o-dependent. HMehra (1976a) Suggests substituting a prior esti-
mate 84y and proposes a version of Algorithm 1 for computing the
optimal design on (-n,x).

Other papers related directly to this problem are Payne et al.

(1975) and Viort (1972). The latter work seems to have been the first
attempt to investigate D-optimality in dynamic systems. In general,
all these papers concentrate on D-optimality, although the basic

theorems have much wider validity, as in Section 3.

C. Keviczky (1975)
Keviczky considers a scalar (single-input-single output) ver-

sion of (1C), specifically of the form

n m r

T a1y(t-i) A biu(t—i) + AL c‘e(t-i)

i=0 i=0 i=0
where 8 "6 " 1, m
tributed and Gaussian, with zero means. He considers separately the

A

n, rsn. The errors are identically dis-




case of {e(t)} wuncorrelated and correlated and he works with fin-

itely many observations and therefore in the time-domain. As in B,
he constructs the Fisher information matrix, regarding as the k
parameters eT = (bo,....bm. al.....an). and, for the uncorrelated
errors case, derives a recursion for the determinant of the covar-
iance matrix of the least-squares estimators of the parameters, from
the N-observation case to that of N + 1, Using this, he is able to
choose u(N + 1) to maximize the increase in the D-optimality cri-
terion subject to an amplitude constraint

-U cu(N+1) suU.
As often happens, it is optimal to take |u(N + 1)| = U.

When the errors are correlated, optimal design has to be based
on the information matrix, which involves the usual difficulty of
ignorance about e¢.

A summary of this approach is given by Goodwin and Payne (1977),
and recursive design is also described by Arimoto and Kimura (1971),

using a Bayesian information-theoretic viewpoint.

D. Mehra (1974b)

This paper reviews the field quite fully and discusses ex-
plicitly state-space models like (3). Controllability and observa-
bility are assumed and the identifiable form of the system given by
(4) - (6) is considered. As in B and C, the log-likelihood from

N observations is written down as
N

Lo = constant - 5 {T(e)v(e) + 2iz(e)1])

wnere 6 denotes the set of k parameters. The Fisher information

matrix related to, say, a scalar input sequence u; = (u(1),s...,u(N))

-4
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can be evaluated, after some effort (details in Mehra, 1976b), and
it turns odt that
M(o,6) = [ W(o,e(uy))e(duy) + A(e) = W(o,E) + A(e)
Uy
where ¢ 1is a measure on the space Uy of all possible Up» and
each element of w(e.uN) is a quadratic form in Uy Typical input

constraints, defining UN. are
; §
(a) uyuy s 1 (energy constraint)
(b) Ju(t)! <1, t=1,...,N (amplitude constraints) .,
Again, D-optimality is considered and direct analogues of

Theorems 1 and 2, Algorithm 1 and the Bound (Mehra, 1976a) are pro-

vided.

In this special case,
¢(M(8,8),I(8,uy)} = trin™ (o,6)H(e,6)} - triM 1o, 5)W(0,E(uy))} ,

and the equivalence theorem is given in terms of this. The formula-
tion given here follows Mehra (1976a, pp;230-249) more closely. In
Mehra (1974b) a prior distribution is assumed for 6 and results
given in terms of
M(g) = EM(6,5) .
Implementation of Algorithm 1 involves, at stage n, the choice
of a ué") e Uy to maximize

tr{M'l(e,zn)N[e.E(uN))} ' (11)

and this itself is a complex procedure. Criterion (11) is quadratic
in Uy» SO fn the bounded-energy case (a) we have an eigenfunction
problem and in the linearly-constrained bounded-amplitude case (b) a

quadratic programming problem, which results in a bang-bang input;
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that is, ju(t)| = 1, for each t.

Even when an optimal design on uN has been computed, it is not
clear how to apply it, being a probability measure on the set of
N-stage inputs. Mehra (1974b) suggests some "concatenation" in which
parts of the positively weighted {uy} (those in the support of the
design) are applied in turn.

In the stationary case, Mehra considers computation of long-term
optimal systems by frequency-domain analysis as in B above, point-
ing out the computational attractiveness related to the simple design
space (-w,n). This approach is made possible by the possibility of
representing the equilibrium model in input-output terms as in (8) in
Section 2.

Mehra (1974b) indicates generalizations to continuous-time, non-
linear and distributed parameter systems and gives some continuous-
time illustrative examples. The only complication in the continuous-

time frequency-domain approach is that the design space of frequencies

is (=m,=).

E. Aoki_and Staley (1970)

Although this paper is more tenuously dependent on the work
of Section 3, it is appropriate to mention it now because it uses an
optimality criterion related to B above. The authors consider the

autoregressive model

k
- aiy(t-i) = u(t) + e(t) , t = 1,85vss
i=0

where the {e(t)} are independent N(O.az). ap=1 and suitable initial

conditions are specified. N observations have to be made to estimate

eT = (al.....ak) and the criterion used is

B
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-tr M(e,£) (12)

where £ 1is a design on uN and M is the Fisher information matrix.

For this criterion, we can find an optimal design that is degen-
erate, concentrated on one point in the design space, that is, on one
set of N inputs. In the bounded energy case, therefore, we must
maximize

tr(I(e.uN)) $

which turns out to be quadratic in Ups subject to the quadratic con-
straint u;uN < 1. As in the treatment of (11) in D above, we must
solve an eigenproblem.

The continuous-time version of this problem expressed in state-
space terms has been examined by Mehra (1974a). Instead of N dis-
crete inputs, observations are made over a finite period (0,T). The

trace criterion (12) is used, and the energy constraint is

T T
f u(t) Tu(t)de = 1 .
0
The optimal {u(t): 0 < t ¢ T} can again be regarded as an

efgenfunction. When there is a scalar parameter the problem is of
Sturm-Liouville type and the equation satisfied by the optimal input
can be regarded as a Fredholm integral equation. Various methods are
suggested for obtaining explicit solutions.

The trace criterion (12) (not the same as the usual one of
tr(-)'l) was also used by Nahi and MNapjus (1971) and Lopez-Toledo
(1974). Its use was criticized by Zarrop and Goodwin (1975), with
rejoinder by iMehra (1975), on the grounds that the information matrices
corresponding to the optimal designs are often singular, so that

identifiability problems may well arise. The corresponding trivial

o ——
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observation in the static design case is implicit in Silvey and

Titterington (1974).

F. Dogorovcev (1971), and Spruill and Studden (1978)

In these papers the influence of time is felt in a slightly

different way. In Dogorovcev the response function is
y(t) = oTu(t) +e(t) , 0stsT (13)

where 6 and u(t), for each t, are k-vectors and {e(t)} 1is a
stationary process with zero means and covariance kernel R(s,t),
defining a reproducing kernel Hilbert space (RKHS) H(R), in the
sense of Parzen (1961). 6 1is estimated by 6, the best estimator
linear in {y(t): 0 s t < 1} and optimal functions

fu(t): 0 <t s 1} are sought for trace optimality of cov(8) and
to minimize the variance of cTé, for a specified vector c¢. An
orthogonal basis can be set up in H(R) and approximately normalized
members of this basis provide the optimal input functions.

Spruill and Studden (1978) extend the work to more complex

responses, dependent on a spatial variable « as well as t.

G. Miscellaneous papers

In Mehra (1974a) it was not necessary to choose a design on
the class of input strategies because a degenerate design was opti-
mal. Such a search for an optimal input process leads to a more con-
ventional numerical problem. The choice of inputs over the interval
(0,T), subject to some integral constraint, to minimize some time-
integrated functional is a familiar extremal problem in control
engineecring, leading to solution by variational methods or by the

theory of eigenfunctions. Such methods constitute what is sometimes
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called the optimal control approach.

Mehra (1974a) falls into this category, as does his precursor
Levadi (1966). This author considered the continuous-time scalar

moving-average process
T
y(t) = l b(t,r)u(x)dr +e(t) , O0stsT,

where the function b(-,*) contains k parameters, 8. An input

process {u(t): 0 <t s T} has to be chosen, subject to

T L
£ w?(t)dt = 1, to minimize tr I"}(6,u(+)), where 1 1(.,+) denotes

the covariance matrix of the best linear estimator of 8. The noise

may be correlated. In this moving-average example the optimal input

is independent of 6, unlike most of the cases we have considered,
and the solution, which, like Dogorovcev (1971), is based on the
RKHS formulation of Parzen (1961), is again an eigenfunction satis-
fying a Fredholm integral equation.

In Goodwin (1971) a discrete-time nonlinear state-space system,
involving k parameters o, coupled with a lincar observation equa-
tion, is linearized., The performance-index to be minimized is the
sum of the more usual trace criterion (see Section 3) and a penalty
function to restrict the input choice. HNumerical solution is nec-
essary; see also Nahi and Wallis (1971).

The trace criterion has been used in single-input-single-output
input-output models by CGoodwin, et al. (1973), Goodwin and Payne
(1973). Hamiltonian methods were used to compute optimal inputs
which compared well with suboptimal strategies.

Other approaches have considered specific types of input process
and tried to optimize within the appropriate class; see Van der Bos

(1967, 1973), Litman and Huggins (1963).
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5. OPTIMAL CHOICE CF SAMPLING INSTANTS OR LOCATIONS

Section 4 concentrated on the problem of choosing optimal input
processes. Here we consider how, given the input processes for a
continuous-time system that can be sampled at discrete instants, the
sampling strategy should be designed. Three models are considered

below, corresponding to three groups of authors.

A. Sacks, Ylvisaker and Wahba |

These authors considered the response models similar to (13)

in Section 4F. Sacks and Ylvisaker (1966) looked at the scalar

parameter case, with

y(t) = eu(t) + e(t) , Bst<1,

and they considered how to choose N distinct sampling times so as
to minimize the variance of the best linear estimator of . In |
particular, they looked at what happened as N + « and found that
asymptotically optimal solutions existed, provided the error covar-

iance kernel R(s,t) was non-smooth on s =t and provided u(t)

belonged to H(R). The optimal solutions were characterized but

their explicit computation is difficult. In later papers (1968, 1970),
they extended their work to the k-parameter case and relaxed the
aforementioned condition on R(s,t).

Wahba (1971) related the problem to one of function approxima-

PR SSENRR

tion by splines and did more work on the computation of optimal se-

- g

quences of designs.

B. Goodwin, Mehra and others

In a series of papers starting with Goodwin, et al. (1974),

ETIN

linear state-space models of the following form were considered.




dx(t) = Gx(t)dt + Hu(t)dt + Fde(t) (14)
y(t) = Bx(t) + Cu(t) ,

with some initial conditions, where &, the parameter vector, is
made up of the unknowns in (G, H, B, C) and where {e(t)} is a
(multivariate) process with independent increments. Sampling times
for N observations have to be chosen, which leads to the replace-
ment of (14) by an appropriately integrated discrete recursion. The
Fisher information matrix is written down and the D-optimality and
trace-optimality criteria are considered. In Goodwin, et al. (1974)
and Payne, et al. (1975), where for N large the frequency-domain
approach is used, the improvement resulting from non-uniform sampling
intervals in a simple example and the simultaneous choice of sampling
frequency and input function, are discussed. The work is summarized
in Goodwin and Payne (1976, 1977, Section 6.5).

Mehra (1976b) cconsiders a similar model to (14), with observation
equation

y(t) = Bx(t) + n(t) , 0stel

where n(t) 1is Gaussian white noise. He considers the choice of
measurement times not now from a parameter estimation point of view
but from one of state estimation. Instead of the Fisher information
matrix he considers P(t), the covariance matrix of the state vector,
whose evolution is governed by the Kalman equations. In particular,
he would like to "minimize" P(1). However, P(1) is hard to compute
explicitly in the continuous-time model, as a solution of a Riccati
equation and he opts for approximations that lead back to considera-
tion of criteria based on the Fisher information matrix. The paper

closely parallels lHehra (1974b), with results 1ike Theorems 1 and 2




and a computational procedure on the lines of Algorithm 1.

Ng and Goedwin (1976) consider the model
dx(t) = 6x(t)dt + Fde(t)
y(t) = Bx(t)

k where e(t) 1is white Gaussian noise.

Using (0,=) as the design space, they represent a sampling
strategy as a design ¢ on (0,~) with, as extreme points, the
uniform sampling rates. The appropriate Fisher information matrix

satisfies Theorem 1, so that in a k-parameter problem an optimal

strategy can be achicved using at most % kKfk + 1) sampling
rates.
E As usual, explicit results depend on knowledge of 6 . Methods of

coping with ignorance about o and of frequency-domain analysis

are described. They show that it is better to concatenate subexperi-
ments using pure sinusoids than to carry out a single experiment with

a multi-frequency input.

C. Seinfeld and others

These authqrs are involved with such spatial problems as

the measurement of pollution and with the location of monitoring

stations. They are therefore obliged to look at distributed-parameter

systems and to construct spatial designs that are both exact (a gen-

eral design measure will not do) and non-replicating.

With the pollution levels as state variables, the Kalman filter
equations are constructed and a criterion of "total integrated var-
iance” (integrated over time and space) is computed, using the
i ] Riccati equation for the state covariance matrix P(t,w). Heavy

numerical work is necessary for optimal choice of, say, ‘N locations.
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In Yu and Seinfeld (1973) sequential choice is suggested; see also
Chen and Seinfeld (1975), Seinfeld (1976).

6. CLOSING REMARKS

The problem of optimal experimental design is clearly important
in models where time is an inevitable component. It is pleasing that
the Kiefer-Wolfowitz work in static models carries over automatically
te many dynamic problems in which the underlying design space can be
a class of input processes (time-domain analysis), a range of fre-
quencies (frequency-domain) or a range of sampling rates (sampling
strategies).

Although the published theory does not go far beyond D-optimal-
ity or trace-optimality, general criteria could be considered, as in
Section 3. There is not much written about Ds-optimality and its
counterparts, in which only s of the k parameters are of interest,
although again this would not involve any extra fundamental ideas.
Goodwin and Payne (1977) mention it in the context of model discrimin-
ation, drawing analogy with work of Atkinson and Cox (1974) and
Atkinson and Fedorov (1975a, 1975b). The latter two papers bear some
resemblance to a paper by Gagiiardi (1967), who considers a special
model choice problem involving a finite parameter space. His methods
are generalized by Kuszta and Sinha (1976, 1977, 1978).

These are some areas where further development is desirable.
Another is the consideration of more examplies, in particular less
simpie ones than at present reported, although they are likely to in-
volve hard computational work because of the almost inevitable depen-
dence of the information matrix on the parameter values. Any advances

in the numerical aspects cf these problems would be very valuable.
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